Satellite imagery fusion methods to improve urban land cover classes identification

نویسندگان

  • M. Caprioli
  • E. Tarantino
چکیده

The growing use of Geographic Information Systems (GIS) has led to new research opportunities in the application of satellite imagery to urban analysis. The information content of such images is a function of the combined influence of the radiometric, spatial, and spectral resolution of the sensor. The different bands of satellite sensors are recorded synchronously so that their pixels may be precisely matched and compared with their counterpart pixels in other bands. This means that we can use spectral ("colour") differences to identify urban features to the extent that colours are diagnostic sort of a coarse spectroscopy from space. Spectral sensor technology, however, coupled with the complexity of ground features in urban areas, can make visual interpretations of satellite imagery both labour intensive and uncertain. Moreover, the informational utility of a multispectral image for land cover classification is often limited by the spectral and spatial resolution of the imaging system. No currently existing single system offers both high spatial and high spectral resolution. Furthermore, if the same techniques that were developed for earlier lower resolution satellite imagery are used on high-resolution imagery (such as maximum likelihood classification), the results can create a negative impact. Lower resolution data are not affected greatly by artefacts, such as shadows, and they also “smooth” out variations across ranges of individual pixels, allowing statistical processing to create effective land cover maps. Individual pixels in higher resolution data can represent individual objects and contiguous pixels in an image can vary dramatically, creating very mixed or “confused” classification results. This paper proposes a two-stage classification procedure that effectively reduces negative impacts related to spectral ambiguity and spatial complexity of land cover classes of high resolution imagery in urban environments. In order to achieve both high spatial and spectral resolution in a single image, image fusion is employed and its influences on thematic accuracy of land cover classification, through an example using IKONOS panchromatic and multispectral images, is examined. Three fused images were generated using intensity-hue-saturation (IHS), principal component analysis (PCA) and high pass filter (HPF) fusion methods. All the images were then classified under the supervised classification approaches of maximum likelihood classifier (MLC). Using the classified result of the original multispectral image as a benchmark, integrative analysis of overall accuracy, with the degree of improvement in the classification from using the fused images, are executed. Validity and limitations of image fusion for land cover classification are finally drawn.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparing the Capability of Sentinel 2 and Landsat 8 Satellite Imagery in Land Use and Land Cover Mapping Using Pixel-based and Object-based Classification Methods

Introduction: Having accurate and up-to-date information on the status of land use and land cover change is a key point to protecting natural resources, sustainable agriculture management and urban development. Preparing the land cover and land use maps with traditional methods is usually time and cost consuming. Nowadays satellite imagery provides the possibility to prepare these maps in less ...

متن کامل

Stereo Based Very High Resolution Satellite Image Classification Using Rpcs

Detection of urban objects in very high resolution (VHR) satellite imagery is challenging due to the similarities in the spectral and textural characteristics of urban land cover classes. Therefore, additional information such as elevation data is required for a proper classification. In this study, instead of LiDAR data, elevation information generated from satellite stereo images is used to a...

متن کامل

Learning-Based Sub-Pixel Change Detection Using Coarse Resolution Satellite Imagery

Moderate Resolution Imaging Spectroradiometer (MODIS) data are effective and efficient for monitoring urban dynamics such as urban cover change and thermal anomalies, but the spatial resolution provided by MODIS data is 500 m (for most of its shorter spectral bands), which results in difficulty in detecting subtle spatial variations within a coarse pixel—especially for a fast-growing city. Give...

متن کامل

Validation of Volunteered Geographic Information Landuse Change Using Satellite Imagery

Land use change monitoring is one of the main concerns of managers and urban planners due to human activities and unbalanced physical development in urban areas. In this paper, a combination of remote sensing data and volunteered geographic information was used to assess the quality of volunteered geographic information on land use and land cover changes monitoring. For this purpose, the ORBVIE...

متن کامل

Evaluation of Worldview-2 Imagery for Urban Land Cover Mapping Using the Interimage System

Mapping of urban land cover using remote sensing technology has been widely explored, especially with the recent availability of high resolution images and object-based processing techniques. This study uses the InterIMAGE system and WorldView-2 orbital sensor imagery, two technologies which are new and still little explored in urban studies, to classify land cover in five test-sites near to th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013